
Invariants	and	Performance

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	7.6

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Lesson	Introduction

• When	a	function	can	rely	on	an	invariant,	it	
can	more	efficient,	because	it	doesn't	need	to	
re-create	the	information	carried	by	the	
invariant.

• Many	functions	are	O(n)	with	a	context	
argument,	but	O(n^2)	without	one.

• We'll	look	at	some	illustrative	examples.

2

Learning	Objectives

• At	the	end	of	this	lesson	the	student	should	be	
able	to
– show	two	examples	of	functions	that	can	be	
written	either	with	context	arguments	or	without	
them

– explain	why	the	version	with	context	arguments	
are	far	more	efficient

– explain	how	context	arguments	and	invariants	can	
lead	to	better	designs.

3

Example	1:	number-list
A NumberedX is a (list Int X)
A NumberedListOfX is a ListOfNumberedX

number-list : ListOfX -> NumberedListOfX
RETURNS: a list like the original, but with the

elements numbered consecutively, starting
from 1

(number-list (list 22 44 33))
= (list (list 1 22) (list 2 44) (list 3 33))

(number-list (list 44 33))
= (list (list 1 44) (list 2 33))

4

Here's	the	example	we	looked	at	
back	in	Lesson	7.1.

Here	was	our	solution,	with	a	context	
argument

;; number-list-from
;; : ListOfX Number -> NumberedListOfX
;; GIVEN: a sublist slst
;; WHERE: slst is the n-th sublist of some list lst0
;; RETURNS: a copy of slst numbered according to its
;; position in lst0.
;; STRATEGY: struct decomp on slst : ListOf<X>
(define (number-list-from lst n)
(cond
[(empty? lst) empty]
[else
(cons
(list n (first lst))
(number-list-from (rest lst) (+ n 1)))]))

5

Could	we	do	this	directly?
(define (number-list lst)
(cond
[(empty? lst) empty]
[else (number-list-combiner

(first lst)
(number-list (rest lst)))]))

What	must	number-list-combinerdo?		Let's	look	at	our	example.

6

What	must	number-list-combiner	do?

(number-list (list 22 44 33))
= (number-list-combiner

22
(number-list (list 44 33)))

= (number-list-combiner
22
(list (list 1 44) (list 2 33)))

=

= (list (list 1 22) (list 2 44) (list 3 33))

7

magic!

What	must	number-list-combiner	do?

(number-list-combiner
22 (list (list 1 44) (list 2 33)))

= (list
(list 1 22) (list 2 44) (list 3 33))

8

I	see	a	map	here

And	a	cons	here

So	now	we	can	write	the	code
;; number-list-combiner :
;; X NumberedListOfX -> NumberedListOfX
;; GIVEN: x1 and ((1 x2) (2 x3) ...),
;; RETURNS: the list ((1 x1) (2 x2) (3 x3) ...)
;; strategy: Use HOFC map on numbered-list
(define (number-list-combiner first-val numbered-list)
(cons
(list 1 first-val)
(map

;; (list Number X) -> (list Number X)
;; RETURNS: a list like the original,
;; but with the first element incremented
(lambda (elt)
(list

(+ 1 (first elt))
(second elt)))

numbered-list)))

9

Let's	stress-test	it...

length with	context	
argument

without	
context	
argument

1000 0 184

2000 1 506

4000 2 1972

8000 4 8196

16000 7 34907

10

Let's	run	both	versions	on	lists	of	different	 lengths	and	see	how	long	 they	take	to	
run.		Code	for	this	is	07-1-number-list-with-stress-tests.rkt.

Times	in	milliseconds:

What	do	we	observe?

• As	the	length	of	list	doubles,
– the	time	with	the	context	argument	approximately	
doubles

– the	time	without	the	context	argument	
approximately	quadruples	(4x)

11

What	happened	here?

• If	lst has	length	N,	then	without	an	
accumulator:
– (number-list-combiner n lst) takes	time	
proportional	to	N (we	say	it	is	O(N))

– (number-list lst) calls	number-list-helper
O(N) times.

– So	the	whole	thing	takes	O(N^2)	.

• The	version	with	accumulator	runs	in	time	O(N)	.
– much,	much	faster!

12

You	could	do	the	same	thing	with	
Fred-expressions

• Instead	of	adding	new	bound	variables	on	the	
way	down,	subtract	them	on	the	way	up:

13

;; STRATEGY: Use template for FredExp on f

(define (free-vars f)
(cond

[(var? f) (list (var-name f))]
[(lam? f) (set-minus

(free-vars (lam-body f))
(lam-var f))]

[(app? f) (set-union
(free-vars (app-fn f))
(free-vars (app-arg f)))]))

Function	Definition
We	can	write	free-vars as	a	
straightforward	structural	
decomposition,	 using	the	set	
operations	from	sets.rkt.		At	each	
lam,	we	find	 all	the	variables	in	the	
body,	 and	then	remove	the	
lambda-variable	from	that	set
We	use	set-union,	rather	than	
append or	something	 like	it,	
because	we	are	supposed	 to	return	
a	set.

14

Fred-expressions
Size no	context	arg with context	arg

2559 0 0

81,919 328 47

655,358 2528 390

2,621,439 10732 1591

15

We	saw	similar	speedups	with	the	
FredExp example.	From	this	evidence,	
it's	clear	the	version	with	the	context	
argument	runs	much	faster,	but	there's	
not	enough	 data	here	to	see	whether	
there's	an	asymptotic	speedup	 (eg O(n)	
vs O(n^2))

But	performance	really	isn't	the	point

• The	real	point	of	invariants	is	to	document	the	
assumptions that	a	function	makes	about	the	world	it	
lives	in.

• Many	times,	those	assumptions	are	things	the	function	
cannot	check	except	with	great	difficulty
– e.g.,	the	order	contains	no	duplicates
– e.g.,	the	inventory	is	sorted

• You	want	to	check	these	things	once,	and	then	the	
other	functions	can	rely	on	them.

• This	also	means	you	have	a	single	point	of	control	for	
these	checks
– this	leads	to	a	better	design

16

Summary

• You	should	now	be	able	to
– show	two	examples	of	functions	that	can	be	
written	either	with	context	arguments	or	without	
them

– explain	why	the	version	with	context	arguments	
are	far	more	efficient

– explain	how	context	arguments	and	invariants	can	
lead	to	better	designs.

17

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Problem	Set	7.

18

